Device-Level Simulation of Wave Propagation Along Metal–Insulator–Semiconductor Interconnects
نویسندگان
چکیده
A device-level simulation is presented for studying wave propagation along metal–insulator–semiconductor interconnects. A set of nonlinear equations is first formulated by combining the motion equations of charged carriers and Maxwell’s equations. The set of nonlinear equations is then transformed into the frequency domain, which leads to sets of nonlinear equations for the fundamental mode and its harmonics. Finally, the sets of nonlinear equations in the frequency domain are discretized using the finite-element method and solved using Newton’s iterations. Special numerical enhancements are implemented to speed up the computational convergence and handle the boundary layer nature of the problem under study. This device-level simulation provides knowledge on field–carrier interactions, semiconductor substrate loss, and nonlinearity, as well as slow-wave and screening effects of charged carriers. This device-level simulation scheme enables a rigorous full-wave study of nonlinearity effects that arise from semiconductor substrates. Numerical examples for some practical material and geometrical parameters are included to illustrate capabilities and efficiency of the proposed device-level simulation scheme.
منابع مشابه
Self-consistent modeling of longitudinal quantum effects in nanoscale double-gate metal oxide semiconductor field effect transistors
Ultrathin double-gate silicon-on-insulator transistors are studied in the quantum coherent limit. By treating electron-electron interaction on the level of a mean field approach, the density matrix of the device becomes diagonal when expressed in a basis that results from imposing scattering boundary conditions at the terminals. The self-consistent scattering wave functions are computed using a...
متن کاملVLSI on-chip interconnection performance simulations and measurements
We examine electrical performance issues associated with advanced VLSI semiconductor on-chip interconnections or “interconnects.” Performance can be affected by wiring geometry, materials, and processing details, as well as by processor-level needs. Simulations and measurements are used to study details of interconnect and insulator electrical properties, pulse propagation, and CPU cycletime es...
متن کاملEffect of EMI between Wireless Interconnects and Metal Interconnects on CMOS Digital Circuits
Wireless interconnects are built with two or more antennas on a semiconductor integrated circuit (IC) communicating with each other to form an intra-chip communication network. The wireless interconnects are considered a viable solution to the global communications problems faced by ICs. In this work, the effects of the electromagnetic coupling between the on-chip antennas for wireless intercon...
متن کاملPropose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure
This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...
متن کاملActive transmission control based on photonic-crystal MOS capacitor
Silicon nanophotonics has recently attracted great attention since it offers an opportunity for low cost opto-electronic solutions based on silicon complementary metal oxide semiconductor (MOS) technology. Photonic crystal (PhC) structures with slow photon effect are expected to play a key role in future large-scale ultra-compact photonic integrated circuits. A novel vertical-MOS-capacitor-base...
متن کامل